

Webinar

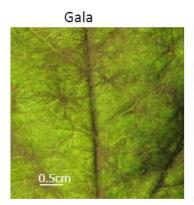
"NUOVE TECNICHE GENOMICHE PER MIGLIORARE LA SOSTENIBILITÀ DELLE COLTURE AGRARIE: POTENZIALITÀ APPLICATIVE E SVILUPPI NORMATIVI"

Venerdì 21 Ottobre, Bologna

Prime applicazioni dell'editing genomico e della cisgenesi per il miglioramento genetico di specie arboree

Stefano Tartarini

Dipartimento di Scienze e Tecnologie Agro-Alimentari


Esempi di cisgenesi in piante da frutto

Resistenza a ticchiolatura

The development of a cisgenic apple plant

Thalia Vanblaere^a, Iris Szankowski^a, Jan Schaart^b, Henk Schouten^b, Henryk Flachowsky^c, Giovanni A.L. Broggini^a, Cesare Gessler^{a,*}

Journal of Biotechnology 154 (2011) 304-311

→ trasferimento geni fra melo e pero

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.31.446424

Perchepied et al., 2021

- Resistenza a colpo di fuoco batterico

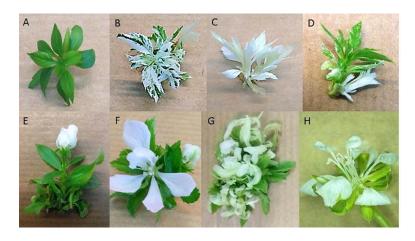
Development of the First Cisgenic Apple with Increased Resistance to Fire Blight

Thomas D. Kost¹, Cesare Gessler¹, Melanie Jänsch², Henryk Flachowsky³, Andrea Patocchi², Giovanni A. L. Broggini^{1,2}*

Esempi di DNA editing in piante da frutto

Efficient Genome Editing in Apple Using a CRISPR/Cas9 system

Chikako Nishitani¹, Narumi Hirai¹, Sadao Komori², Masato Wada³, Kazuma Okada³, Keishi Osakabe⁴, Toshiya Yamamoto¹ & Yuriko Osakabe⁴


SCIENTIFIC REPORTS | 6:31481 | DOI: 10.1038/srep31481 - 2016

Targets:

PDS gene

TFL-1 gene

Efficient Targeted Mutagenesis in Apple and First Time Edition of Pear Using the CRISPR-Cas9 System

Aurélie Charrier[†], Emilie Vergne[†], Nicolas Dousset, Andréa Richer, Aurélien Petiteau and Elisabeth Chevreau* published: 06 February 2019

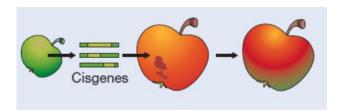
doi: 10.3389/fpls.2019.00040

Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system

Valerio Pompili^{1,2,*} D, Lorenza Dalla Costa¹, Stefano Piazza¹, Massimo Pindo¹ and Mickael Malnoy^{1,*}

Plant Biotechnology Journal (2020) 18, pp. 845-858

Primi risultati del progetto Biotech (aprile 2020 – gennaio 2023)



Sottoprogetto: Approcci biotecnologici di nuova generazione per migliorare la produttività e la sostenibilità delle specie da frutto

Due linee di ricerca presso l'Università di Bologna (DISTAL):

- Utilizzo della cisgenesi per ottenere piante di pero resistenti al colpo di fuoco batterico

- Utilizzo del DNA editing per migliorare la stabilità produttiva di piante di pero
 - → silenziamento del gene responsabile dell'autoincompatibilità

«Cisgenesi» per resistenza al colpo di fuoco batterico in pero

Due geni di resistenza al colpo di fuoco batterico clonati in specie selvatiche di melo:

- da *Malus* x *robusta #*5 → CC-NBS-LRR type

Development of the First Cisgenic Apple with Increased Resistance to Fire Blight

Thomas D. Kost¹, Cesare Gessler¹, Melanie Jänsch², Henryk Flachowsky³, Andrea Patocchi², Giovanni A. L. Broggini^{1,2}*

- da *Malus fusca* → RLK type

Towards map-based cloning of FB_Mfu10: identification of a receptor-like kinase candidate gene underlying the Malus fusca fire blight resistance locus on linkage group 10

Ofere Francis Emeriewen • Klaus Richter • Stefano Piazza • Diego Micheletti • Giovanni A. L. Broggini • Thomas Berner • Jens Keilwagen • Magda-Viola Hanke • Mickael Malnoy • Andreas Peil

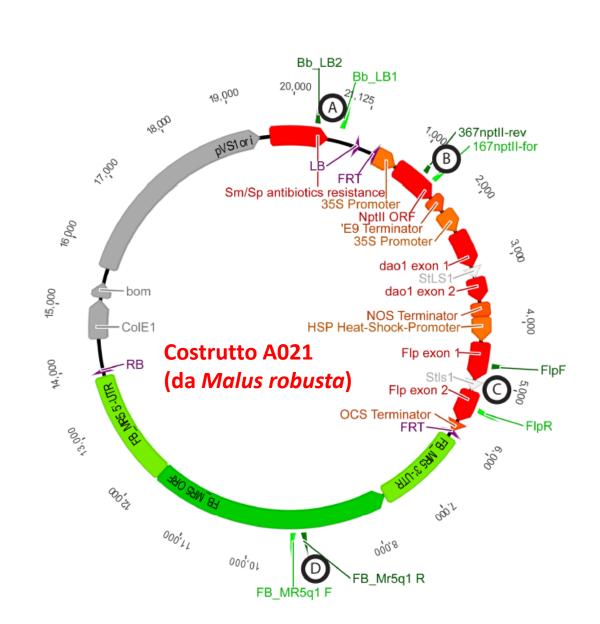
«Cisgenesi» per resistenza al colpo di fuoco batterico in pero

Schema costrutti disponibili per cisgenesi

Transgeni in rosso

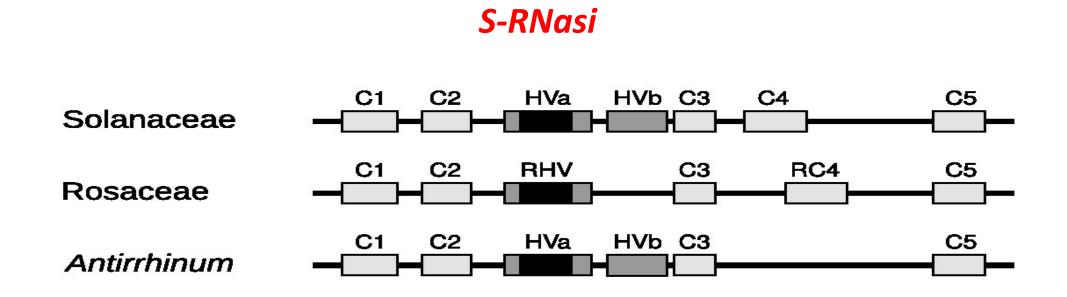
Cisgene in verde

LB = Left border


RB = Right border

FRT = Sito riconoscimento Flippase Heat shock promoter

nptII = neomicina fosfotransferasi

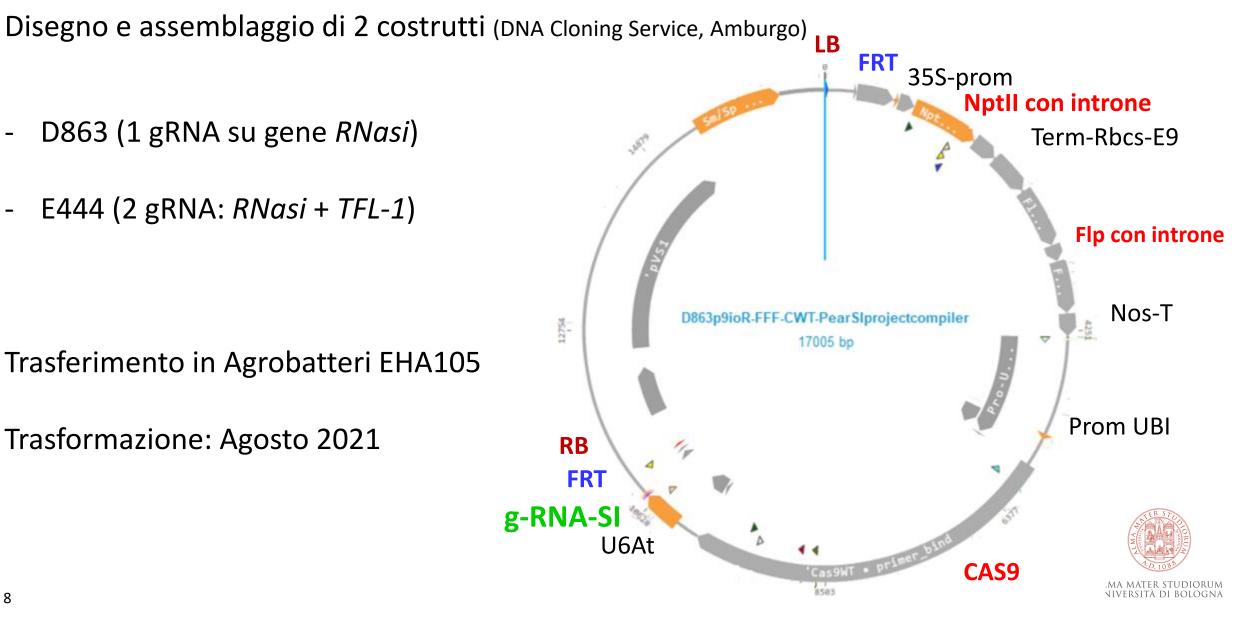

Costrutto D034 (da Malus fusca)

Trasformazione: Luglio 2021

DNA editing sul gene dell'autoincompatibilità gametofitica in pero

Nelle Rosaceae l'autoincompatibilità è controllata da una "Ribonucleasi codificata dal locus S"

Erano note le sequenze delle *S-RNasi* di 'Conference' S108 – S121 > disegno RNA guida


Metodo scelto: «Plasmid-mediated genome editing»

D863 (1 gRNA su gene *RNasi*)

E444 (2 gRNA: *RNasi* + *TFL-1*)

Trasferimento in Agrobatteri EHA105

Trasformazione: Agosto 2021

Risultati in pero

DNA editing

D863

E444

Cisgenesi

D034

Codice esperimento	Tecnica	Target	Genotipo	
CIS-A021	Cisgenesi	FB_Mr5	Conference	
CIS-D034	Cisgenesi	FB_Mfu10	Conference	
CRISPR-D863	DNA-editing	S-RNAsi	Conference	
CRISPR-E444	DNA-editing	S-RNAsi e TFL1.1	Conference	

Efficienze di rigenerazione (2-20%) e trasformazione (0,5-18%) relativamente basse

Verifiche molecolari ancora in corso

Costrutto	Linee analizzate	nptll	Flp	Mr5	Mfu10
CIS-A021	29	26	24	26	-
CIS-D034	7	7	7	-	7
CRISPR-D863	6	3	3	-	-
CRISPR-E444	6	6	3	-	-

Conclusioni

- ✓ Dimostrata la fattibilità delle applicazione cisgenesi e DNA editing in piante da frutto
- ✓ Promettenti i primi risultati ottenuti al DISTAL
- ✓ Necessario completare le analisi molecolari, rendere le piante cisgeniche e soprattutto effettuare le verifiche fenotipiche
- ✓ Le sequenze di diversi genomi di piante da frutto sono già disponibili (i.e. melo, pero, pesco, fragola)
- ✓ Indispensabile arricchire le conoscenze sulle funzioni geniche per avere nuovi candidati da poter utilizzare in futuri esperimenti di cisgenesi e DNA editing
 - → migliorare la sostenibilità e salubrità delle produzioni frutticole

Gruppo di ricerca del DISTAL:

- Dott.ssa Paola Negri (responsabile del laboratorio di colture in vitro)
- Dott.ssa Cecilia Domenichini e Dott. Marco Defrancesco (borse di studio)
- Prof. Luca Dondini

Collaborazioni esterne:

- Dr. Mickael Malnoy (FEM, San Michele all'Adige)

 per preparazione costrutti e analisi molecolari
- Dr. Andreas Peil (JKI, Dresda)
 per resistenza al colpo di fuoco batterico da M. fusca
- Dr. Giovanni Broggini (ETH, Zurigo) e Dr. Andrea Patocchi (Agroscope, Wadenswil)
 per resistenza al colpo di fuoco batterico da M. robusta