

Prof. Tito Caffi DIPROVES

Prof. Edoardo Puglisi

DISTAS

I biopesticidi: dai prodotti naturali agli agenti di biocontrollo

La biodiversità microbica del suolo alla base del biocontrollo

La biodiversità di 1 metro cubo di suolo

Cosa fanno?

- Decomposizione della sostanza organica
- Ciclo dei nutrienti
- Fissazione dell' N_2
- Soppressione delle malattie delle piante
- Miglioramento della struttura del suolo
- Biodegradazione degli inquinanti
- Emissioni di gas serra

Chi sono? Quanti sono?

La biomassa microbica in 1 ha di suolo pesa circa come una vacca

Dotazione microbiologica di un g di suolo di buona qualità:

- Oltre 1 miliardo di cellule
- Centinaia di migliaia di specie microbiche

Come scegliere i migliori agenti di biocontrollo: il bioprospecting

Bioprospecting -> Sistematica ricerca di prodotti utili derivati da risorse biologiche incluse piante, animali e microorganismi che possono essere sfruttati per la commercializzazione ed il beneficio della società

- 1. Isolamento di ceppi microbici dal suolo e dalla rizosfera
- 2. Dereplicazione ed identificazione tassonomica
- 3. Valutazione fenomica *in vitro* di proprietà di biocontrollo
- 4. Ranking quantitativo delle proprietà di biocontrollo
- 5. Analisi genomiche per confermare le proprietà, valutare sicurezza ed unicità (IP)
- 6. Rese in biomassa e scale-up industriale
- 7. Test di serra e di campo
- 8. Registrazione e commercializzazione

Bioprospecting: dal laboratorio al campo

Ranking quantitativo delle proprietà di biocontrollo (e biostimolazione)

					J L	1 0, 0	5	
Code	Identity	N Fixation	P Solubilization	IAA Pr	oduction	Antifungal Activity vs. S. sclerotiorum	Siderophore	Rank
				w/Try	w/o Try			
UC4094	Enterobacter tabaci	1	0.5	0.46	0.42	0.51	0.51	3.41
UC4098	Stenotrophomonas rhizophila	1	0.5	0.16	1,00	0.57	0.00	3.22
UC4109	Enterobacter tabaci	1	0.5	1.00	0.11	0.38	0.17	3.16
UC4127	Klebsiella oxytoca	1	0.5	0.25	0.22	1.00	0.09	3.06
UC4089	Stenotrophomonas pictorum	1	0.5	0.25	0.22	1.00	0.09	2.99
UC4105	Stenotrophomonas pictorum	1	0.25	0.17	0.03	0.75	0.78	2.98
UC4103	[Pseudomonas] hibiscicola	1	0.25	0.04	0.04	0.94	0.68	2.94
UC4123	Klebsiella oxytoca	1	0.5	0.25	0.21	0.93	0.02	2.92
UC4099	Enterobacter tabaci	1	0.5	0.36	0.09	0.45	0.51	2.90
UC4117	Pseudomonas taiwanensis	1	0.75	0.07	0.09	0.59	0.39	2.88
UC4113	[Pseudomonas] hibiscicola	1	0.25	0.04	0.03	0.85	0.68	2.86
UC4096	Stenotrophomonas pavanii	1	0.25	0.04	0.03	0.76	0.77	2.85
UC4090	Aeromonas caviae	1	0.5	0.18	0.12	0.74	0.30	2.84
UC4106	Enterobacter ludwigii	1	0.5	0.36	0.26	0.60	0.08	2.80
UC4093	Stenotrophomonas pictorum	1	0.25	0.02	0.01	0.60	0.91	2.79
UC4082	Pseudomonas pseudoalcaligenes	1	0.25	0.01	0.03	0.90	0.60	2.79
UC4084	Kosakonia radicincitans	1	0.5	0.04	0.02	0.65	0.58	2.78
UC4091	Pseudomonas pseudoalcaligenes	1	0	0.22	0.05	0.92	0.57	2.76
UC4101	Klebsiella grimontii	1	0.5	0.25	0.25	0.61	0.01	2.61
UC4118	Klebsiella oxytoca	1	0.5	0.26	0.22	0.43	0.11	2.52
UC4088	Pseudomonas indoloxydans	1	0	0.06	0.06	0.86	0.53	2.50
UC4087	Pseudomonas indoloxydans	1	0	0.05	0.06	0.82	0.55	2.48
UC4092	Kosakonia radicincitans	1	0.5	0.13	0.13	0.66	0.06	2.48
UC4104	Stenotrophomonas rhizophila	1	0.25	0.04	0.02	0.56	0.58	2.46
UC4110	Kosakonia oryzendophytica	1	0.5	0.06	0.04	0.60	0.18	2.39
UC4126	Pseudomonas japonica	1	0.5	0.18	0.13	0.11	0.42	2.33
UC4122	Pseudomonas taiwanensis	1	0.75	0.00	0.03	0.20	0.22	2.20
UC4125	Delftia tsuruhatensis	1	0	0.01	0.01	0.75	0.28	2.05
UC4102	Chryseobacterium ureilyticum	0	0.25	0.04	0.03	0.74	0.98	2.04
UC4120	Chryseobacterium rhizosphaerae	0	0	0.18	0.02	0.82	0.97	1.99
UC4086	Klebsiella oxytoca	0	0.5	0.54	0.31	0.42	0.19	1.96
UC4112	Pseudomonas taiwanensis	1	0.5	0.01	0.03	0.17	0.23	1.95
UC4081	Chryseobacterium oranimense	0	0.25	0.04	0.03	0.66	0.91	1.89
UC4083	Stenotrophomonas acidamiphila	0	0	0.05	0.04	0.77	0.75	1.61
UC4107	Sphingobacterium canadense	0	0	0.06	0.02	0.46	1.00	1.54
UC4108	Chryseobacterium rhizosphaerae	0	0	0.04	0.03	0.65	0.81	1.53
UC4080	Sphingobacterium detergens	0	0	0.04	0.01	0.45	0.79	1.29
UC4121	Sphingobacterium siyangense	0	0	0.00	0.00	0.40	0.87	1.27

Table 4. Ranking of the rhizobacteria based on their in vitro PGP (plant growth promoting) and antifungal assay.

w/Try and w/o Try stands for with or without DL-Tryptophan.

Attività di biocontrollo di Alternaria spp. ed alternariosi in pomodoro

96 isolati batterici VS. 3 specie di Alternaria

REDUCTION OF FUNGI BIOMASS OR MICOTOXINS PRODUCTION	RANK
0	0
1-25%	0,5
25.1-50%	1,0
50.1-75%	1,5
75.1-100%	2

Ranking effetti negativi

INCREASE FUNGI BIOMASS OR MICOTOXINS PRODUCTION	RANK
0-25%	-1.0
25.1-50%	-2.0
>50%	-3.0

LC-MS/MS

Micotossine di Alternaria spp.:

- Tenuazonic acid (TeA)
- Alternariol (AOH)
- Alternariol-methyl-ether (AME)
- Tentoxin (TEN)

Dual plate

assay

Misura della variazione in biomassa in confronto al controllo (*Alternaria spp*. da sola)

Test in vaso attività di biocontrollo di Alternaria spp.

TESI CODICE СТ Testimone non trattato C1 Consorzi C2 C3 C4 Consorzi + 50% fungicida C1+50% C2+50% C3+50% C4+50% 50% fungicida 50% 100% fungicida 100%

27/07/22

Genomica per l'efficacia e la sicurezza

		A	ntidiotics		:	sidero	pnor	es			CLP		IOX	ans	Ba	cterio	cins	e	nyzn	nes	ta	axis		Co	ioniza	ation				Intera	actio	n			13	55		165	55
R4	17												۲				•									••	•			• (
R8	34		•										٠	•																• (•			•		
R3	32		•			•							•													••			•	•			l)						
S4	19		•										٠																	• (•					
S3	35		•										٠) 			• (•	٠					
R7	76		•		•								•).			• (•					
S3	34		•				•						•																•	• (•						
S1	19		•										•								•												•	•					
SC)4		•				•						•								•												٠	•					
		HCN	HPR Phenazines (PCA, 2-OH-PCA)	Achromobactin	Enantio-pyochelin	Ferric enterobactin receptor (pfeA)	Pvoverdine	Pyoverdine (type II)	Ahizobactin TonB receptor (putative)	Anikasin	Viscosin	White-line-producing WLIP	Cytotoxin FitD	Mangotoxin	LIpB Microcin B-libe	Spyocin S1-S2-AP41-S8-S9-H1	Spyocin S3-S10-H2 Spyocine S6/S7	Aprocess const	Chitinase	Pectate lyase	MCPs (cta,mcp)	Plagellar driven chemotaxis Pili-mediated chemotaxis	Adhesin (LapABCE)	Alginate	Arylpolyene	Hemagglutinin Psl	2,3bd biosynthesis (budC/ydjL)	ACC deaminase	Acetoin biosynthesis (ilvN, ilvB)	2,3bd catabolism (acoABCRX)	IAA biosvnthesis (iaaM. iaaH)	IAA biosynthesis (ipdC)	IAA catabolism (iac)	PAA catabolism	Type III effector ExoU	Type III effector HopJ	Subtype 1.1	Subtype 2	Subtype 3

FIGURE 3 Presence/absence table of known antibiotics, siderophores, cyclic lipopeptides (CLP), toxins, bacteriocins, and extracellular hydrolases with reported antibacterial, antifungal or anti-oomycetal properties (2,3bd, 2,3-butanediol; PAA, phenylacetic acid; IAA, indole-3-acetic acid, GABA, γ-aminobutyric acid; ACC, 1-aminocyclopropane-1-carboxylic acid). All genomes were also screened for genes implicated in chemotaxis, plant colonization, plant-bacteria interactions, type III secretion systems (T3SS) and type VI secretion systems (T6SS). Full sized dots indicate the presence of homologs for all necessary genes or complete gene clusters. Small dots indicate incomplete clusters and dot size is proportional to the number of homologous genes found. All genes and reference sequences, including the genes encoding for traits for which no homologous genes were found, can be found in **Supplementary Table S4**. Strains are grouped according to their phenotypical activity *in vitro* (R47, R84, R32, and S49) and on plant tissue (R32, S49, S35). The least inhibiting strains are at the bottom of the table (S34, S19, S04).

TABLE 3 Biosynthetic gene clusters as predicted by antiSMASH in the nine *Pseudomonas* genomes are shown here.

	Region	Туре	From	То	Most similar known cluste
R32	Region 1	NRPS-like	108,600	137,959	Mangotoxin
	Region 2	arylpolyene	301,125	344,738	APE Vf
	Region 3	NRPS	1,763,102	1,815,679	Pyoverdine
	Region 4	NRPS	3,581,365	3,648,859	Pyoverdine
R47	Region 1	NRPS-like	114,171	144,819	Mangotoxin
	Region 2	arylpolyene	499,588	543,208	APE Vf
	Region 3	other	4,075,994	4,117,076	Pyrrolnitrin
	Region 4	NRPS, resorcinol	4,846,097	4,925,365	Pyoverdine
	Region 5	NRPS	4,969,815	5,022,843	Pyoverdine
R76	Region 1	NRPS-like	159,850	202,848	Mangotoxin
	Region 2	arylpolyene	525,506	569,081	APE Vf
	Region 3	NRPS	2,841,936	2,945,551	Viscosin
	Region 4	NRPS	3,563,564	3,604,450	Pyochelin
	Region 5	NRPS	4,364,529	4,407,587	Poaeamide
	Region 6	NRPS	4,766,660	4,819,556	Pyoverdine
R84	Region 2	NRPS-like	131,789	161,456	Mangotoxin
	Region 3	arylpolyene	499,287	542,891	APE Vf
	Region 4	NRPS, terpene	2,169,525	2,234,015	Pyoverdine
	Region 5	NRPS	2,763,610	2,840,351	Anikasin
	Region 6	NRPS	4,533,076	4,586,074	Pyoverdine
S04	Region 1	arylpolyene	423,375	467,009	APE Vf
	Region 2	NRPS	2,828,784	2,901,359	Pyoverdine
	Region 3	terpene	4,329,654	4,350,538	Pyoverdine
S19	Region 1	arylpolyene	423,375	467,009	APE Vf
	Region 2	NRPS	2,828,790	2,901,365	Pyoverdine
	Region 3	terpene	4,329,659	4,350,543	Pyoverdine
S34	Region 1	NRPS-like	96,203	125,383	Mangotoxin
	Region 2	arylpolyene	431,851	475,456	APE Vf
	Region 3	NRPS	4,344,492	4,408,473	Pyoverdine
	Region 4	NRPS	4,455,540	4,508,538	Pyoverdine
S35	Region 1	NRPS-like	109,236	150,641	Mangotoxin
	Region 2	arylpolyene	474,763	518,338	APE Vf
	Region 3	terpene, NRPS	2,731,917	2,858,142	Viscosin
	Region 4	NRPS	4,185,638	4,230,966	WLIP
	Region 5	NRPS	4,576,688	4,629,596	Pyoverdine
S49	Region 1	NRPS-like	120,934	150,633	Mangotoxin
	Region 2	arylpolyene	473,010	516,614	APE Vf
	Region 3	NRPS	2,191,853	2,267,429	Pyoverdine
	Region 4	NRPS	3,906,071	3,982,443	Anikasin
	Region 5	NRPS	4.658.162	4.711.160	Pvoverdine

For each region, the biosynthetic cluster type, the genomic boundaries (in bp) and the most similar known biosynthetic gene cluster are shown.

De Vrieze et al., 2020. Frontiers in Microbiology, 11: 857

Conclusioni

- Il suolo, la rizosfera e la fillosfera sono una preziosissima riserva di agenti di biocontrollo
- Metodi ben consolidati per il bioprospecting e la quantificazione di attività di biocontrollo
- Ranking quantitativo fondamentale per selezionare i migliori ceppi
- Ricerca fondamwntale per comprendere e sfruttarre meglio alcuni processi come la resistenza sistemica indotta
- Rese in biomassa e scale-up industriale prerequisiti per l'economicità delle soluzioni
- Genomica fondamentale per valutare sicurezza e attività dei ceppi
- Ricerca necessaria per calibrare ed ottimizzare modi di produzione ed impiego, dosi di applicazione e co-applicazione con fertilizzanti e fitofarmaci
- Gli avanzamenti scientifici possono supportare la regolamentazione

edoardo.puglisi@unicatt.it

